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SUMMARY. This article considers thermoelastic effects which
influence both the thermal engineering design and optical
propagation in solid state high average power laser (HAPL)
systems. The methods and computations described here have been
developed for applications, ultimately, to crystalline slabs
with arbitrary symmetry properties and with arbitrary spatial
orientations between crystalline axes and slab configurationms.
For this, accurate numerical solutions are required
simultaneously for the heat equation and Hooke's law in their
most general tensor forms.

Prompted by the optical problem requirements in HAPL
systems, this work utilizes new implementations of Eulerian
discretizations and dynamic ADI methods for solving general
fourth—order elliptic partial differential equations (PDE's)
which describe stress potentials in anisotropic media. These
formulations can provide both steady state and transient PDE
solutions. This article concludes with computed results for
trigonal Al,05 crystal deformations in various crystal
axes/slab orientations.

1. INTRODUCTION. Thermoelastic stress analysis comes to bear
in at least two major areas of solid state high average power
laser (HAPL) design. The first area is in the thermal
engineering and physics analysis of coolant flows, materials
selection, system configuration, etc. The second area is in
optical propagation analysis where stress induced birefringence
and thermal lensing effects are potentially significant factors
in (HAPL) beam quality. These latter factors of beam quality
govern the computational arid physics approaches which are
applied in this work. A typical problem can be sketched, for
example, by noting that relatively low thermal conductivities
of doped laser glasses permit thermal peaks to build up within
the glass when flashlamp radiation is absorbed. Such thermal
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peaks can generate thermal stresses which approach temnsile
yield strengths at only modest average power levels
(0(102-103w)) [1]. These peaks can also generate
stress-induced birefringence and thermal lensing effects which
may adversely affect beam polarization and phase properties,
Several possible measures are taken to address these problems.
First, freely-suspended laser slabs are used in order to
eliminate mechanically induced stresses. Second, we consider
only small material deformations; laser slabs with large
material displacements are--by definition--poor designs.
Third, various candidate crystals for high average power lasers
are known to have thermal conductivities which exceed those of
laser glasses by wide margins. But crystal symmetries have
their own principal frames of reference, in addition to the
principal stress orientations. These geometrical factors act
to complicate the analysis of thermal stress—induced
birefringence in slabs which are cut in arbitrary shapes and
orientations relative to crystal axes and to flashlamp pump
source functions.

In order to accommodate these various specific problems in
HAPL designs, the TECATE code has been formulated, validated,
and applied to numerous practical problems. This article
presents the basic physics formulations and some selected
sample problem results.

2. PHYSICS FORMULATIONS. Figure 1 shows schematically a simple
slab amplifier test assembly which is being used in early
baseline evaluations. The Nd-doped glass is used for purposes
of calibrations and code validations; candidate laser crystals
will replace the glass slab in later applications. We focus
our attention upon the rectangular slab cross section which is
practically freely suspended by the soft elastomer mounting, as
shown in Fig. 1.

Fig. 1. A simple slab amplifier system.



2.1 Heat Flow in Anisotropic Media

The time-dependent heat equation for a crystalline slab is
written as

aT

pcaT =V * (R - vT) + Q, (1
where
T = temperature (degrees)
p = mass density (mass/volume)
c = heat capacity (energy/mass—degree)
K = symmetric thermal conductivity tensor
(power/length-degree)
Q = rate of internal heat generation
(power/volume)

It is presently assumed that p, ¢, and the components of
the tensor K are all constants; this restriction can readily
be relaxed, as in Reference 2. 1In the majority of our work the
source function Q and the boundary conditions are independent
of time, which permits steady-state solutions to exist and to
be obtained from the PDE

v ¢+ (RVT) = -Q. (2)

We further consider numerous problems in which the Z-dependence
can be discarded. In such physical circumstances the 2-D
equation,

2 2 2
— R B (3)
ax Ixdy 3y

k11

*
9°(K * 9T)

represents rigorously the 3-D physical system subject to
Dirichlet, natural Neumann, and film boundary conditions. It
is assumed that kjj ko> k?z (i.e.K* is positive

definite). Eqn. (3) is thus elliptic, and solution by the
alternating directions implicit (ADI) method is quite
appropriate.

The slab geometry which is considered in the coupled heat
and stress calculations of the TECATE code is shown in Fig. 2.

Fig. 2. Slab geometry in the TECATE code.
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Both the heat and stress equations are solved by mapping the

x-y plane onto the §-n plane so that the parallellogram @

is mapped onto the unit square. The transformed heat equation
is then solved according to difference equations which have
been derived by integration of the partial differential heat
equation on auxiliary cells for both interior grid points (or
nodes) and for boundary nodes. The leading truncation error
terms have been derived for these difference equations in

Ref. 3; and local truncation errors can thus be controlled
readily via the number of grid cells which are selected in any
given problem by the code user.

2.2 Stress Potential Equations for Thermoelasticity in
Anisotropic Media. Stress—optics analyses require accurate
evaluations of the full stress tensor ¢; and thermal

lensing analyses require accurate material displacement
values. We follow closely the conventions and notations which
have been used by Nye [4]. The symmetric second-rank stress
tensor is written alternatively in matrix notation as

11 12 %13 % xx cxy ®xz 71 % %5
g = 921 %22 %23 |= %yx c,yy Gyz ={% %2 % (4)
931 932 933 T2x “zy %z2 %5 % %3

and in the compact notation of a six-component vector

_ t
o' = (01, Oy Ogs 045 Tos 06) . (5)

Generalized Hooke's Law:

For small deformations the stress-strain relationship 1is
given in compact notation by

€' =S*g¢' +a'T, (6)

where S is the so-called compliance matrix, S = (s8;3),
and T here represents the temperature deviation from that of

the undeformed state. The strain-displacement relationmships
are:

€ =a_u € =-a-1+a—.v1

1 3x 4 3z 23y

3V du W

= e = e— o —
€2 3y €5 3z ax (7)

€ :."a_w € =a_u+gl

3 a3z 6 9y ax

where the material displacements are denoted by
d = (u, v, wt.



With these definitions and conventions, PDE's can now be
developed for the stress potentials. The general 3-D balance
of force equation with zero external body forces is

Veoc = 0. In expanded form

g 0 a0

Ly, 6, 5.4, -
ax 9y 9z
306 302 ac4

X * Ay ¥ 2z =0, (8)
o0 aa4 303

5
x dy Y3z T 0.

It is plausible to conclude from the assumptions made in the
heat problem classification above that all stresses are
independent of the z-coordinate, and by Hooke's Law the strains
are also independent of z. The displacement vector can also be
shown to be independent of z. Geometrically, this implies that
the planar domain R would in general deform to a non-planar
surface. Such deformations will be referred to as generalized
plane deformations. The system of equations (8) thus reduces to

a0 90
___1.+___6=0’
X 3y
a0 390
6 2 _
ax ay 0, (9)
3_024.3_0&:0
Ix 3y '

Equation (9) will frequently be referred to as the reduced set
of balance of force equations. The PDE system (9) consists of
three equations in the five unknowns 03, 03, 04,

05, and o¢g. Two more equations are needed in order to
determine a unique solution. These extra equations are the
so—-called compatibility equations. Invoking the fact that the
displacement vector d is independent of z in Eqn. (7), it
follows that the strains can be defined simply as

€ =a_u =u € = (

1" ax %2 3y 3 ’

(10)

¢ =¥ = v e =28V ,3u

4 3x €5 3y 6 ax 3y °’

and that the following compatibility relationships hold:
3281 3256 3 €,
- + =0 , (11a)



4]
£

€ 385
-— =0 . (11b)
p.4 3y

(%4

By the use of Hooke's Law in Eqns. (11), one obtains together
with Eqn. (9) a system of five PDE's in 03, 02, 04,

05, 0g of maximum order two. From here PDE's can be

developed for stress potentitals. The basic logic is as follows:

(1) Stresses are defined as some linear combinations of
certain derivatives of potential functions.

(ii) 1In terms of these potentials the balance of force
equations should be satisfied identically.

(iii) The number of potentials is equal to the smallest
possible number of compatibility equations.

(iv) These potentials are solutions to the compatibility
equations.

In general, these stress potentials are not unique. (See
Reference 4). 1In addition to the above criteria, one attempts
to choose those potentials which contain certain desirable
characteristics. For example, the potential functions chosen
below use the positive definite property of potential energy to
show that they are solutions of elliptic systems of PDE's [3]
and that a dynamic alternating direction implicit (DADI) method
can thus be used to solve both the heat and stress potential
equations with high levels of numerical efficiency.

The Potential Equations:
i. For the general balance of force Eqn (8), the three

potentials ¢, ¥, and x are introduced such that
2 2 2

3°X 3y 39
o R e——— o — o 2 m e—
1752 322 4 3yd z
2 2 2
_9¢ 3 X = _3V¥
%) 2t T2 %5 T " 3zax (12)
3z ax
_ahv ok _ ok
3 7327 % = " axe y
ax Ay y
ii. For the reduced balance of force equations, only two
potentials ¢ and ¥ are needed, such that
o] =a—2;¢ o =_a_2_¢_ g = _32¢
1 3y 2 axz 3X3dy
(13)
1] 1]



It can readily be shown that Eqns (12) and (13) meet the
criteria mentioned above. Finally, using Hooke's Law in
Eqn (11) and Eqn (13), the following system of PDE's is

obtained for the potentials ¢ and ¥:

Lyd + Lav = MyT, - (l4a)
Lov + L3¢ = MyT, (14b)
where
4 4 4
L a L a L ] a
L =8, — -28,, ——— + (25, _+s5,,)
4 22 axa 26 3x33y 12 76 3 23y2
4
] a 1 a
- 2s + 8., —-,
6 axay3 11 3y
3 3 3 3
_ 1 a L} [] a L 1 a 1 a
Ly = 85, 3 * (S55%8,4) — (5)4*856) 7t %15 T3
Ix a3x 9 axay Ay
2 2 2
' ! 3 '
L,=s,, — - 25 + 8. — , (15)
2 44 3x2 45 axdy 55 ay2
' 32 ' a2 ,32
MZ = - 02 + a - a 5
X aIxa3y y
] a L a
M. =a, — -—a_ — .
1 4 Ix > 3y

1 . .
The terms s;; are expressed in terms of the compliance
matrix elements sij by the relationship

' 8..5,.;
8., = 8. - —%2—21 , (16)
] ] 33
and al is expressed in terms of a; by the relation
. 8.
a; =a, -a, ;lé . an
33

The PDE's (14) are mapped onto the unit square and discretized
into difference equations by the same methods which were used
previously for the heat equation. The formulations of these
discretizations for fourth-order equations is lengthy and the
reader is referred to Reference 3 for fully detailed
descriptions. Free-surface boundary conditions are applied,
and these stress potential equations are solved numerically for



stresses and also for the derived quantities of strains and
material displacements. We call attention to the fact that
3-D stresses o1, 02, 03, 04, 05, O¢g and

3-D displacements u, v, w are computed rigorously from the
theory which includes explicitly only the two independent
spatial variables x and y, subject to the assumed independence
of temperature loadings upon z for slabs which are practically
infinite in the z-direction. According to this development the
material displacements w in the z-direction can be non-trivial
functions of the independent variables x and y--but not of z.

In the special case of plane strain (e3=0) in
isotropic media, only one potential ¢ is needed; and it can
be shown that Eqns. (14) reduce identically to the familiar
biharmonic equation

4 4 2 2
3% 36y _ _ a°T a°T
+ 2 + 7) = a(l+v)( =+ 5

1-v2 34¢
( [ 2
E ax Ix 3y 3y IxX y

) . (18)

The TECATE code has been validated extensively against
other heat and stress codes [6] [7] at LLNL for isotropic
problems.

3. THE DADI METHOD. The noteworthy advance of DADI methods
beyond conventional ADI methods was the development of
strategies which automatically determine changes in the
stepsize At dynamically. This dynamic procedure permits 4t

to always remain within regions of rapid convergence and to
suppress instabilities before they have grown too much. These
DADI procedures also minimize the overwhelming array of choices
for At in standard ADI methods. In order to sketch the
development of our DADI method, we define the steady-state

solution of the heat and stress potential equations by u and
define the nth error by

el = y - yn (19)

It can be shown for the PDE, Lu=f, where L=A+B, that
e™Z = ((1 + ata)(1 + atBN T ((1 - 4£A)(1 - arB))e™ .(20)

Assuming that el is an eigenvector for A and hence B with
eigenvalues -\ and-u, respectively, it follows from

Eqn. (20) that the reduction factor R for a single double sweep
is given by

'l'l+2._ 1 - At 1 - uAt) n _ n
€ - <1 + xAt> (1 T ubt) & % R(xAt, wAt)e .  (21)

¢

Starting from step n + 2 and performing another double sweep,
one then obtains u™*%; and the error is eM*4 = yN*+4 _ y,

The convergence factor CF for two double sweeps thus becomes



n+4
_lle Il

] el I

CFr

Wl

Rz(xAt, uat) . (22)

In order to devise a strategy for DADI, we back up to the nth
step and perform one giant double sweep with stepsize 2At.
This double sweep generates the value ut*4 and the error
eN*4=yn*+4_y The test parameter TP is an estimate of the
relative local truncation error; it is defined by

n+4  n+4 +4  “n+b 1
ffu -u

n
e - e

=
I\ o+és n || _n+4 n |
u - u e - e

TP . (23)
By use of Eqn. (21) the test parameter can also be written as

RZ(XAt, puAt) - R(2AAt, 2uAt)

TP = 3 (24)
R"(xat, uat) -1
We consider now the elliptic heat equation in the form
Lyus ayu + 2a11uxy + 202%yy =f , (25)
and the elliptic fourth-order biharmonic equation
L, uzu + 2u +u = f . (26)
4 AXXX XXYyy yyyy

The finite difference approximation to (25) can be written as
L,U= (A, +B,+CJU=F , (27)

where Aj, By, and Cj correspond essentially to the

discretization of uyy, uyy, and uxy, respectively.

Similarly for the biharmonic equation, we obtain

L, U= (AA +B, + CA)U =F , (28)

where A4, By, and C4 correspond essentially to the
discretization of uyyyy, Uyvyy s and Uyyyy, respectively,

An ADI type double sweep for solving Eqn. (27) is defined

by:
n+l n
U - U n+l n n
AT A2 U + B2 U+ C2 v -f ,
(29)
n+2 +1
U - n+l n+2 n
IR v AZ U + B2 U + C2 U -F .

Similarly, an ADI type double sweep for Eqn. (28) is defined by
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Lisu®+cu®-m,

n+
= - (A4U 4 4

(30)

Un+2 _ Un+1
At

n+l n+2 n
= - (AAU +B,U +CuU - F).
Notice that the minus sign in Eqn. (30) is required because
A, and B, are positive definite. These DADI integration
schemes have been shown to be unconditionally stable [3].

4., COMPUTATIONAL RESULTS. We consider in this example
thermoelastic stresses and displacements in a trigonal
crystal of Al1703. The orientation of the crystalline

axes a and c relative to the orthogonal axes (xy, x2,

x3) is defined according to the arbitrarily established
conventions which appear in the I.R.E. Standards on
Piezoelectric Crystals [8]. Ssee Fig. 3. Material property
data for kija ajij and for elastic compliances S are

defined in this conventional frame of orthogonal axes (xi,
x2, x3). Of course, if crystals are cut in shapes and
orientations which do not conform or otherwise coincide with
(x1, x7, x3), the material property tensors must be
transformed appropriately from (xj;, x, x3) to that
laboratory frame (x,y,z) which is used in conjunction with
the crystal's shape and orientation. These coordinate
transformations are described elsewhere in the literature (3]
{4], and their practical effects on material deformations are
shown in the results below,.

Xy ™ C

Fig. 3. Conventional coordinate axis orientations for the
trigonal crystal Al;03, as defined by IRE
Standards.

The trigonal Al)03 crystal in this example is cut in
the shape of a rectangular parallelopiped which has a 1 cm
square cross-section in the x-y plane and which is
practically infinite with uniform temperature loading in the
z direction. The temperature deviation function is 8T =
4y(l-y) -2/3 in all cases considered here. (In other
examples we obtain &§T(x,y) by solving the heat equation
with flashlamp pump source functions which deposit heat in
the slab according to radiative transport models for
absorption of radiation by the slab subject to various
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thermal boundary conditions. These flashlamp source
descriptions are too lengthy for inclusion in the present
article.) 1In the first case, the slab edges and the
laboratory coordinate axes are parallel to the crystal
convention axes, as shown in Fig. 4. The material
deformation components along (x,y,z) are denoted by (u,v,w).
The displacements w in the z-direction are clearly a
non-trivial function of x and y. Figure 5 presents case 2 in
which the crystal axes orientation is rotated by 90° about
the z-axis relative to case 1 above. Finally, the Al,03
crystal can be rotated by 90° about the y-axis relative to
case 2 above prior to cutting it into the rectangular slab.
(This is now a double rotation relative to the initial
orientation which was considered in case 1, Fig. 4.) As can
be seen in Fig. 6, the material deformations are now a
perfectly planar surface in this final (doubly rotated)
orientation.

Y. Xy

A2,0,

Fig. 4. Magnified deformation of A2 503 slab in
conventional frame; Case 1.

Y. %,

Fig. 5. Case 2: Deformed Af;03 slab with crystal axes
rotated by 90° about Z-axis relative to Case 1.

Y. X,

AL,0,

Fig. 6. Case 3: Deformed Af,03 slab with crystal axes
rotated by 90° about Y-axis relative to Case 2.
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All of the TECATE solutions in this example converged in
fewer than 30 DADI iterations, and the CPU time on the LLNL
CRAY IS computer was a fraction of a second for the largest
mesh considered (81x51).

5. CONCLUSIONS. The DADI method has been applied in the TECATE
code to obtain numerical solutions of both the heat equation
and an elliptic system of fourth-order PDE's for stress
potentials which describe thermoelasticity in arbitrary
symmetry classes and thermal enviromments for freely suspended
crystalline slabs. Local truncation error properties of those
discretization schemes which are used in TECATE have been
derived theoretically and confirmed experimentally for
temperatures, for stress potentials, and for the derived
material stresses, strains, and displacements. Although this
work has been limited at the present time to the study of
two—dimensional equations, this approach, with proper
generalizations, can be applied to treat also the case of
finite crystalline slabs with three-dimensional equations.

References

l. J. L. Emmett, W. F. Krupke, and J. B. Trenholme, "The Future
Development of High Power Solid State Laser Systems", Physics
of Laser Fusion, Vol. IV, Lawrence Livermore National
Laboratory, UCRL-53344 (1982).

2. S. K. Doss, "Dynamic ADI Methods for Elliptic Equations with
Gradient Dependent Coefficients", Ph.D. Thesis, LBL-6142 (1977).
3. S. K. Doss, N. N. Carlson, R. J. Gelinas, "Finite Difference
Solutions of Thermoelasticity in Anisotropic Crystals. An
Application of the Dynamic ADI Method", UCRL-92134

4. J. F. Nye, Physical Properties of Crystals, Clarendon Press,
Oxford (1957).
5. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic
Elastic Body, Holden-Day, Inc., San Francisco (1963).

6. A. B. Shapiro, "A Finite Element Heat Conduction Code for
Analyzing 2-D Solids", UCID-20045 (March, 1984), Lawrence
Livermore National Laboratory, Livermore, CA.

7. Standards on Piezoelectric Crystals, Proc. Institute of
Radio Engineers, 37, 1378-95 (1949).

8. J. 0. Hallquist, "A Vectorized, Implicit Finite Deformation,
Finite Element Code for Analyzing the Static and Dynamic
Response of 2-D Solids'", UCID-19677 (Feb., 1983), Lawrence
Livermore National Laboratory, Livermore, CA.




